Computer Science > Machine Learning
[Submitted on 21 Oct 2024]
Title:Traffic Matrix Estimation based on Denoising Diffusion Probabilistic Model
View PDF HTML (experimental)Abstract:The traffic matrix estimation (TME) problem has been widely researched for decades of years. Recent progresses in deep generative models offer new opportunities to tackle TME problems in a more advanced way. In this paper, we leverage the powerful ability of denoising diffusion probabilistic models (DDPMs) on distribution learning, and for the first time adopt DDPM to address the TME problem. To ensure a good performance of DDPM on learning the distributions of TMs, we design a preprocessing module to reduce the dimensions of TMs while keeping the data variety of each OD flow. To improve the estimation accuracy, we parameterize the noise factors in DDPM and transform the TME problem into a gradient-descent optimization problem. Finally, we compared our method with the state-of-the-art TME methods using two real-world TM datasets, the experimental results strongly demonstrate the superiority of our method on both TM synthesis and TM estimation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.