Computer Science > Computation and Language
[Submitted on 18 Oct 2024]
Title:Efficiently Computing Susceptibility to Context in Language Models
View PDF HTML (experimental)Abstract:One strength of modern language models is their ability to incorporate information from a user-input context when answering queries. However, they are not equally sensitive to the subtle changes to that context. To quantify this, Du et al. (2024) gives an information-theoretic metric to measure such sensitivity. Their metric, susceptibility, is defined as the degree to which contexts can influence a model's response to a query at a distributional level. However, exactly computing susceptibility is difficult and, thus, Du et al. (2024) falls back on a Monte Carlo approximation. Due to the large number of samples required, the Monte Carlo approximation is inefficient in practice. As a faster alternative, we propose Fisher susceptibility, an efficient method to estimate the susceptibility based on Fisher information. Empirically, we validate that Fisher susceptibility is comparable to Monte Carlo estimated susceptibility across a diverse set of query domains despite its being $70\times$ faster. Exploiting the improved efficiency, we apply Fisher susceptibility to analyze factors affecting the susceptibility of language models. We observe that larger models are as susceptible as smaller ones.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.