Computer Science > Computational Engineering, Finance, and Science
[Submitted on 12 Oct 2024 (v1), last revised 27 May 2025 (this version, v3)]
Title:Bridging the Gap Between Data-Driven And Theory-Driven Modelling - Leveraging Causal Machine Learning for Integrative Modelling of Dynamical Systems
View PDFAbstract:Classical machine learning techniques often struggle with overfitting and unreliable predictions when exposed to novel conditions. Introducing causality into the modelling process offers a promising way to mitigate these challenges by enhancing predictive robustness. However, constructing an initial causal graph manually using domain knowledge is time-consuming, particularly in complex time series with numerous variables. To address this, causal discovery algorithms can provide a preliminary causal structure that domain experts can refine. This study investigates causal feature selection with domain knowledge using a data center system as an example. We use simulated time-series data to compare different causal feature selection with traditional machine-learning feature selection methods. Our results show that predictions based on causal features are more robust compared to those derived from traditional methods. These findings underscore the potential of combining causal discovery algorithms with human expertise to improve machine learning applications.
Submission history
From: David Zapata Gonzalez [view email][v1] Sat, 12 Oct 2024 12:33:18 UTC (10,540 KB)
[v2] Mon, 2 Dec 2024 16:25:09 UTC (4,117 KB)
[v3] Tue, 27 May 2025 11:31:49 UTC (4,071 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.