Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Oct 2024]
Title:DeBiFormer: Vision Transformer with Deformable Agent Bi-level Routing Attention
View PDF HTML (experimental)Abstract:Vision Transformers with various attention modules have demonstrated superior performance on vision tasks. While using sparsity-adaptive attention, such as in DAT, has yielded strong results in image classification, the key-value pairs selected by deformable points lack semantic relevance when fine-tuning for semantic segmentation tasks. The query-aware sparsity attention in BiFormer seeks to focus each query on top-k routed regions. However, during attention calculation, the selected key-value pairs are influenced by too many irrelevant queries, reducing attention on the more important ones. To address these issues, we propose the Deformable Bi-level Routing Attention (DBRA) module, which optimizes the selection of key-value pairs using agent queries and enhances the interpretability of queries in attention maps. Based on this, we introduce the Deformable Bi-level Routing Attention Transformer (DeBiFormer), a novel general-purpose vision transformer built with the DBRA module. DeBiFormer has been validated on various computer vision tasks, including image classification, object detection, and semantic segmentation, providing strong evidence of its this http URL is available at {this https URL}
Submission history
From: Nguyen Huu Bao Long [view email][v1] Fri, 11 Oct 2024 07:23:10 UTC (24,084 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.