Computer Science > Computation and Language
[Submitted on 9 Oct 2024 (v1), last revised 7 Feb 2025 (this version, v3)]
Title:Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning
View PDF HTML (experimental)Abstract:This work studies the problem of large language model (LLM) unlearning, aiming to remove unwanted data influences (e.g., copyrighted or harmful content) while preserving model utility. Despite the increasing demand for unlearning, a technically-grounded optimization framework is lacking. Gradient ascent (GA)-type methods, though widely used, are suboptimal as they reverse the learning process without controlling optimization divergence (i.e., deviation from the pre-trained state), leading to risks of over-forgetting and potential model collapse. Negative preference optimization (NPO) has been proposed to address this issue and is considered one of the state-of-the-art LLM unlearning approaches. In this work, we revisit NPO and identify another critical issue: reference model bias. This bias arises from using the reference model (i.e., the model prior to unlearning) to evaluate the unlearning success, which can compromise NPO's effectiveness. Specifically, it leads to (a) uneven allocation of optimization power across forget data with varying difficulty levels and (b) ineffective gradient weight smoothing during the early stages of unlearning optimization. To overcome these challenges, we propose a simple yet effective unlearning optimization framework, called SimNPO, showing that `simplicity' in removing the reliance on a reference model (through the lens of simple preference optimization) benefits unlearning. We provide deeper insights into SimNPO's advantages through an analysis based on mixtures of Markov chains. Extensive experiments further validate SimNPO's efficacy on benchmarks like TOFU and MUSE, as well as its robustness against relearning attacks. Codes are available at this https URL.
Submission history
From: Chongyu Fan [view email][v1] Wed, 9 Oct 2024 17:58:12 UTC (5,134 KB)
[v2] Mon, 28 Oct 2024 19:55:24 UTC (5,134 KB)
[v3] Fri, 7 Feb 2025 18:34:28 UTC (5,375 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.