Computer Science > Computation and Language
[Submitted on 3 Oct 2024 (v1), last revised 6 Mar 2025 (this version, v3)]
Title:HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly
View PDF HTML (experimental)Abstract:Many benchmarks exist for evaluating long-context language models (LCLMs), yet developers often rely on synthetic tasks such as needle-in-a-haystack (NIAH) or an arbitrary subset of tasks. However, it remains unclear whether these benchmarks reflect the diverse downstream applications of LCLMs, and such inconsistencies further complicate model comparison. We investigate the underlying reasons behind these practices and find that existing benchmarks often provide noisy signals due to limited coverage of applications, insufficient context lengths, unreliable metrics, and incompatibility with base models. In this work, we introduce HELMET (How to Evaluate Long-context Models Effectively and Thoroughly), a comprehensive benchmark encompassing seven diverse, application-centric categories. We also address several issues in previous benchmarks by adding controllable lengths up to 128K tokens, model-based evaluation for reliable metrics, and few-shot prompting for robustly evaluating base models. Consequently, we demonstrate that HELMET offers more reliable and consistent rankings of frontier LCLMs. Through a comprehensive study of 59 LCLMs, we find that (1) synthetic tasks like NIAH do not reliably predict downstream performance; (2) the diverse categories in HELMET exhibit distinct trends and low correlations with each other; and (3) while most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when tasks require full-context reasoning or following complex instructions -- the gap widens as length increases. Finally, we recommend using our RAG tasks for fast model development, as they are easy to run and better predict other downstream performance; ultimately, we advocate for a holistic evaluation across diverse tasks.
Submission history
From: Howard Yen [view email][v1] Thu, 3 Oct 2024 17:20:11 UTC (1,236 KB)
[v2] Thu, 10 Oct 2024 15:31:01 UTC (1,223 KB)
[v3] Thu, 6 Mar 2025 18:41:54 UTC (1,314 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.