Computer Science > Machine Learning
[Submitted on 1 Oct 2024 (v1), last revised 18 Feb 2025 (this version, v2)]
Title:Convergent Privacy Loss of Noisy-SGD without Convexity and Smoothness
View PDF HTML (experimental)Abstract:We study the Differential Privacy (DP) guarantee of hidden-state Noisy-SGD algorithms over a bounded domain. Standard privacy analysis for Noisy-SGD assumes all internal states are revealed, which leads to a divergent R'enyi DP bound with respect to the number of iterations. Ye & Shokri (2022) and Altschuler & Talwar (2022) proved convergent bounds for smooth (strongly) convex losses, and raise open questions about whether these assumptions can be relaxed. We provide positive answers by proving convergent R'enyi DP bound for non-convex non-smooth losses, where we show that requiring losses to have Hölder continuous gradient is sufficient. We also provide a strictly better privacy bound compared to state-of-the-art results for smooth strongly convex losses. Our analysis relies on the improvement of shifted divergence analysis in multiple aspects, including forward Wasserstein distance tracking, identifying the optimal shifts allocation, and the H"older reduction lemma. Our results further elucidate the benefit of hidden-state analysis for DP and its applicability.
Submission history
From: Eli Chien [view email][v1] Tue, 1 Oct 2024 20:52:08 UTC (328 KB)
[v2] Tue, 18 Feb 2025 16:17:43 UTC (330 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.