Computer Science > Cryptography and Security
[Submitted on 18 Sep 2024]
Title:Provable Privacy Guarantee for Individual Identities and Locations in Large-Scale Contact Tracing
View PDF HTML (experimental)Abstract:The task of infectious disease contact tracing is crucial yet challenging, especially when meeting strict privacy requirements. Previous attempts in this area have had limitations in terms of applicable scenarios and efficiency. Our paper proposes a highly scalable, practical contact tracing system called PREVENT that can work with a variety of location collection methods to gain a comprehensive overview of a person's trajectory while ensuring the privacy of individuals being tracked, without revealing their plain text locations to any party, including servers. Our system is very efficient and can provide real-time query services for large-scale datasets with millions of locations. This is made possible by a newly designed secret-sharing based architecture that is tightly integrated into unique private space partitioning trees. Notably, our experimental results on both real and synthetic datasets demonstrate that our system introduces negligible performance overhead compared to traditional contact tracing methods. PREVENT could be a game-changer in the fight against infectious diseases and set a new standard for privacy-preserving location tracking.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.