Computer Science > Cryptography and Security
[Submitted on 11 Sep 2024]
Title:CLNX: Bridging Code and Natural Language for C/C++ Vulnerability-Contributing Commits Identification
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) have shown great promise in vulnerability identification. As C/C++ comprises half of the Open-Source Software (OSS) vulnerabilities over the past decade and updates in OSS mainly occur through commits, enhancing LLMs' ability to identify C/C++ Vulnerability-Contributing Commits (VCCs) is essential. However, current studies primarily focus on further pre-training LLMs on massive code datasets, which is resource-intensive and poses efficiency challenges. In this paper, we enhance the ability of BERT-based LLMs to identify C/C++ VCCs in a lightweight manner. We propose CodeLinguaNexus (CLNX) as a bridge facilitating communication between C/C++ programs and LLMs. Based on commits, CLNX efficiently converts the source code into a more natural representation while preserving key details. Specifically, CLNX first applies structure-level naturalization to decompose complex programs, followed by token-level naturalization to interpret complex symbols. We evaluate CLNX on public datasets of 25,872 C/C++ functions with their commits. The results show that CLNX significantly enhances the performance of LLMs on identifying C/C++ VCCs. Moreover, CLNX-equipped CodeBERT achieves new state-of-the-art and identifies 38 OSS vulnerabilities in the real world.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.