close this message
arXiv smileybones

Happy Birthday to arXiv!

It's our birthday — woohoo! On August 14th, 1991, the very first paper was submitted to arXiv. That's 34 years of open science! Give today and help support arXiv for many birthdays to come.

Give a gift!
Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > eess > arXiv:2409.04050

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Electrical Engineering and Systems Science > Image and Video Processing

arXiv:2409.04050 (eess)
[Submitted on 6 Sep 2024 (v1), last revised 30 Dec 2024 (this version, v2)]

Title:EigenSR: Eigenimage-Bridged Pre-Trained RGB Learners for Single Hyperspectral Image Super-Resolution

Authors:Xi Su, Xiangfei Shen, Mingyang Wan, Jing Nie, Lihui Chen, Haijun Liu, Xichuan Zhou
View a PDF of the paper titled EigenSR: Eigenimage-Bridged Pre-Trained RGB Learners for Single Hyperspectral Image Super-Resolution, by Xi Su and 6 other authors
View PDF HTML (experimental)
Abstract:Single hyperspectral image super-resolution (single-HSI-SR) aims to improve the resolution of a single input low-resolution HSI. Due to the bottleneck of data scarcity, the development of single-HSI-SR lags far behind that of RGB natural images. In recent years, research on RGB SR has shown that models pre-trained on large-scale benchmark datasets can greatly improve performance on unseen data, which may stand as a remedy for HSI. But how can we transfer the pre-trained RGB model to HSI, to overcome the data-scarcity bottleneck? Because of the significant difference in the channels between the pre-trained RGB model and the HSI, the model cannot focus on the correlation along the spectral dimension, thus limiting its ability to utilize on HSI. Inspired by the HSI spatial-spectral decoupling, we propose a new framework that first fine-tunes the pre-trained model with the spatial components (known as eigenimages), and then infers on unseen HSI using an iterative spectral regularization (ISR) to maintain the spectral correlation. The advantages of our method lie in: 1) we effectively inject the spatial texture processing capabilities of the pre-trained RGB model into HSI while keeping spectral fidelity, 2) learning in the spectral-decorrelated domain can improve the generalizability to spectral-agnostic data, and 3) our inference in the eigenimage domain naturally exploits the spectral low-rank property of HSI, thereby reducing the complexity. This work bridges the gap between pre-trained RGB models and HSI via eigenimages, addressing the issue of limited HSI training data, hence the name EigenSR. Extensive experiments show that EigenSR outperforms the state-of-the-art (SOTA) methods in both spatial and spectral metrics.
Comments: AAAI 2025 conference paper
Subjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)
Cite as: arXiv:2409.04050 [eess.IV]
  (or arXiv:2409.04050v2 [eess.IV] for this version)
  https://doi.org/10.48550/arXiv.2409.04050
arXiv-issued DOI via DataCite

Submission history

From: Xi Su [view email]
[v1] Fri, 6 Sep 2024 06:46:01 UTC (5,229 KB)
[v2] Mon, 30 Dec 2024 14:58:54 UTC (2,543 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled EigenSR: Eigenimage-Bridged Pre-Trained RGB Learners for Single Hyperspectral Image Super-Resolution, by Xi Su and 6 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
eess.IV
< prev   |   next >
new | recent | 2024-09
Change to browse by:
cs
cs.CV
eess

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack