Computer Science > Software Engineering
[Submitted on 3 Sep 2024 (v1), last revised 31 Jan 2025 (this version, v2)]
Title:LUK: Empowering Log Understanding with Expert Knowledge from Large Language Models
View PDF HTML (experimental)Abstract:Logs play a critical role in providing essential information for system monitoring and troubleshooting. Recently, with the success of pre-trained language models (PLMs) and large language models (LLMs) in natural language processing (NLP), smaller PLMs (such as BERT) and LLMs (like GPT-4) have become the current mainstream approaches for log analysis. Despite the remarkable capabilities of LLMs, their higher cost and inefficient inference present significant challenges in leveraging the full potential of LLMs to analyze logs. In contrast, smaller PLMs can be fine-tuned for specific tasks even with limited computational resources, making them more practical. However, these smaller PLMs face challenges in understanding logs comprehensively due to their limited expert knowledge. To address the lack of expert knowledge and enhance log understanding for smaller PLMs, this paper introduces a novel and practical knowledge enhancement framework, called LUK, which acquires expert knowledge from LLMs automatically and then enhances the smaller PLM for log analysis with these expert knowledge. LUK can take full advantage of both types of models. Specifically, we design a multi-expert collaboration framework based on LLMs with different roles to acquire expert knowledge. In addition, we propose two novel pre-training tasks to enhance the log pre-training with expert knowledge. LUK achieves state-of-the-art results on different log analysis tasks and extensive experiments demonstrate expert knowledge from LLMs can be utilized more effectively to understand logs. Our source code and detailed experimental data are available at this https URL.
Submission history
From: Lipeng Ma [view email][v1] Tue, 3 Sep 2024 13:58:34 UTC (1,435 KB)
[v2] Fri, 31 Jan 2025 05:51:52 UTC (8,604 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.