Computer Science > Machine Learning
[Submitted on 28 Aug 2024]
Title:Evaluating Model Robustness Using Adaptive Sparse L0 Regularization
View PDF HTML (experimental)Abstract:Deep Neural Networks have demonstrated remarkable success in various domains but remain susceptible to adversarial examples, which are slightly altered inputs designed to induce misclassification. While adversarial attacks typically optimize under Lp norm constraints, attacks based on the L0 norm, prioritising input sparsity, are less studied due to their complex and non convex nature. These sparse adversarial examples challenge existing defenses by altering a minimal subset of features, potentially uncovering more subtle DNN weaknesses. However, the current L0 norm attack methodologies face a trade off between accuracy and efficiency either precise but computationally intense or expedient but imprecise. This paper proposes a novel, scalable, and effective approach to generate adversarial examples based on the L0 norm, aimed at refining the robustness evaluation of DNNs against such perturbations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.