Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Aug 2024]
Title:ConceptMix: A Compositional Image Generation Benchmark with Controllable Difficulty
View PDF HTML (experimental)Abstract:Compositionality is a critical capability in Text-to-Image (T2I) models, as it reflects their ability to understand and combine multiple concepts from text descriptions. Existing evaluations of compositional capability rely heavily on human-designed text prompts or fixed templates, limiting their diversity and complexity, and yielding low discriminative power. We propose ConceptMix, a scalable, controllable, and customizable benchmark which automatically evaluates compositional generation ability of T2I models. This is done in two stages. First, ConceptMix generates the text prompts: concretely, using categories of visual concepts (e.g., objects, colors, shapes, spatial relationships), it randomly samples an object and k-tuples of visual concepts, then uses GPT4-o to generate text prompts for image generation based on these sampled concepts. Second, ConceptMix evaluates the images generated in response to these prompts: concretely, it checks how many of the k concepts actually appeared in the image by generating one question per visual concept and using a strong VLM to answer them. Through administering ConceptMix to a diverse set of T2I models (proprietary as well as open ones) using increasing values of k, we show that our ConceptMix has higher discrimination power than earlier benchmarks. Specifically, ConceptMix reveals that the performance of several models, especially open models, drops dramatically with increased k. Importantly, it also provides insight into the lack of prompt diversity in widely-used training datasets. Additionally, we conduct extensive human studies to validate the design of ConceptMix and compare our automatic grading with human judgement. We hope it will guide future T2I model development.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.