Mathematics > Numerical Analysis
[Submitted on 18 Aug 2024]
Title:Convergence of a moving window method for the Schrödinger equation with potential on $\mathbb{R}^d$
View PDF HTML (experimental)Abstract:We propose a novel framework, called moving window method, for solving the linear Schrödinger equation with an external potential in $\mathbb{R}^d$. This method employs a smooth cut-off function to truncate the equation from Cauchy boundary conditions in the whole space to a bounded window of scaled torus, which is itself moving with the solution. This allows for the application of established schemes on this scaled torus to design algorithms for the whole-space problem. Rigorous analysis of the error in approximating the whole-space solution by numerical solutions on a bounded window is established. Additionally, analytical tools for periodic cases are used to rigorously estimate the error of these whole-space algorithms. By integrating the proposed framework with a classical first-order exponential integrator on the scaled torus, we demonstrate that the proposed scheme achieves first-order convergence in time and $\gamma/2$-order convergence in space for initial data in $H^\gamma(\mathbb{R}^d) \cap L^2(\mathbb{R}^d;|x|^{2\gamma} dx)$ with $\gamma \geq 2$. In the case where $\gamma = 1$, the numerical scheme is shown to have half-order convergence under an additional CFL condition. In practice, we can dynamically adjust the window when waves reach its boundary, allowing for continued computation beyond the initial window. Extensive numerical examples are presented to support the theoretical analysis and demonstrate the effectiveness of the proposed method.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.