Quantum Physics
[Submitted on 18 Aug 2024]
Title:Error minimization for fidelity estimation of GHZ states with arbitrary noise
View PDF HTML (experimental)Abstract:Fidelity estimation is a crucial component for the quality control of entanglement distribution networks. This work studies a scenario in which multiple nodes share noisy Greenberger-Horne-Zeilinger (GHZ) states. Due to the collapsing nature of quantum measurements, the nodes randomly sample a subset of noisy GHZ states for measurement and then estimate the average fidelity of the unsampled states conditioned on the measurement outcome. By developing a fidelity-preserving diagonalization operation, analyzing the Bloch representation of GHZ states, and maximizing the Fisher information, the proposed estimation protocol achieves the minimum mean squared estimation error in a challenging scenario characterized by arbitrary noise and the absence of prior information. Additionally, this protocol is implementation-friendly as it only uses local Pauli operators according to a predefined sequence. Numerical studies demonstrate that, compared to existing fidelity estimation protocols, the proposed protocol reduces estimation errors in both scenarios involving independent and identically distributed (i.i.d.) noise and correlated noise.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.