Computer Science > Artificial Intelligence
[Submitted on 17 Aug 2024 (v1), last revised 27 Nov 2024 (this version, v2)]
Title:Temporal Reversed Training for Spiking Neural Networks with Generalized Spatio-Temporal Representation
View PDFAbstract:Spiking neural networks (SNNs) have received widespread attention as an ultra-low power computing paradigm. Recent studies have focused on improving the feature extraction capability of SNNs, but they suffer from inefficient inference and suboptimal performance. In this paper, we propose a simple yet effective temporal reversed training (TRT) method to optimize the spatio-temporal performance of SNNs and circumvent these problems. We perturb the input temporal data by temporal reversal, prompting the SNN to produce original-reversed consistent outputs and to learn perturbation-invariant representations. For static data without temporal dimension, we generalize this strategy by exploiting the inherent temporal property of SNNs for spike feature temporal reversal. In addition, we utilize the lightweight ``star operation" (element-wise multiplication) to hybridize the original and temporally reversed spike firing rates and expand the implicit dimensions, which serves as spatio-temporal regularization to further enhance the generalization of the SNN. Our method involves only a temporal reversal operation and element-wise multiplication during training, thus incurring negligible training overhead and not affecting the inference efficiency at all. Extensive experiments on static/neuromorphic object/action recognition, and 3D point cloud classification tasks demonstrate the effectiveness and generalizability of our method. In particular, with only two timesteps, our method achieves 74.77\% and 90.57\% accuracy on ImageNet and ModelNet40, respectively.
Submission history
From: Yongqi Ding [view email][v1] Sat, 17 Aug 2024 06:23:38 UTC (4,544 KB)
[v2] Wed, 27 Nov 2024 04:25:26 UTC (4,612 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.