Computer Science > Hardware Architecture
[Submitted on 30 Jul 2024]
Title:Evolutionary Approximation of Ternary Neurons for On-sensor Printed Neural Networks
View PDF HTML (experimental)Abstract:Printed electronics offer ultra-low manufacturing costs and the potential for on-demand fabrication of flexible hardware. However, significant intrinsic constraints stemming from their large feature sizes and low integration density pose design challenges that hinder their practicality. In this work, we conduct a holistic exploration of printed neural network accelerators, starting from the analog-to-digital interface - a major area and power sink for sensor processing applications - and extending to networks of ternary neurons and their implementation. We propose bespoke ternary neural networks using approximate popcount and popcount-compare units, developed through a multi-phase evolutionary optimization approach and interfaced with sensors via customizable analog-to-binary converters. Our evaluation results show that the presented designs outperform the state of the art, achieving at least 6x improvement in area and 19x in power. To our knowledge, they represent the first open-source digital printed neural network classifiers capable of operating with existing printed energy harvesters.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.