Computer Science > Machine Learning
[Submitted on 26 Jul 2024]
Title:Machine Unlearning using a Multi-GAN based Model
View PDFAbstract:This article presents a new machine unlearning approach that utilizes multiple Generative Adversarial Network (GAN) based models. The proposed method comprises two phases: i) data reorganization in which synthetic data using the GAN model is introduced with inverted class labels of the forget datasets, and ii) fine-tuning the pre-trained model. The GAN models consist of two pairs of generators and discriminators. The generator discriminator pairs generate synthetic data for the retain and forget datasets. Then, a pre-trained model is utilized to get the class labels of the synthetic datasets. The class labels of synthetic and original forget datasets are inverted. Finally, all combined datasets are used to fine-tune the pre-trained model to get the unlearned model. We have performed the experiments on the CIFAR-10 dataset and tested the unlearned models using Membership Inference Attacks (MIA). The inverted class labels procedure and synthetically generated data help to acquire valuable information that enables the model to outperform state-of-the-art models and other standard unlearning classifiers.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.