Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Jul 2024 (v1), last revised 20 Oct 2024 (this version, v5)]
Title:DiffX: Guide Your Layout to Cross-Modal Generative Modeling
View PDF HTML (experimental)Abstract:Diffusion models have made significant strides in language-driven and layout-driven image generation. However, most diffusion models are limited to visible RGB image generation. In fact, human perception of the world is enriched by diverse viewpoints, such as chromatic contrast, thermal illumination, and depth information. In this paper, we introduce a novel diffusion model for general layout-guided cross-modal generation, called DiffX. Notably, our DiffX presents a compact and effective cross-modal generative modeling pipeline, which conducts diffusion and denoising processes in the modality-shared latent space. Moreover, we introduce the Joint-Modality Embedder (JME) to enhance the interaction between layout and text conditions by incorporating a gated attention mechanism. To facilitate the user-instructed training, we construct the cross-modal image datasets with detailed text captions by the Large-Multimodal Model (LMM) and our human-in-the-loop refinement. Through extensive experiments, our DiffX demonstrates robustness in cross-modal ''RGB+X'' image generation on FLIR, MFNet, and COME15K datasets, guided by various layout conditions. Meanwhile, it shows the strong potential for the adaptive generation of ``RGB+X+Y(+Z)'' images or more diverse modalities on FLIR, MFNet, COME15K, and MCXFace datasets. To our knowledge, DiffX is the first model for layout-guided cross-modal image generation. Our code and constructed cross-modal image datasets are available at this https URL.
Submission history
From: Zeyu Wang [view email][v1] Mon, 22 Jul 2024 09:05:16 UTC (4,113 KB)
[v2] Sun, 28 Jul 2024 11:57:25 UTC (4,797 KB)
[v3] Tue, 6 Aug 2024 12:54:41 UTC (4,913 KB)
[v4] Sun, 25 Aug 2024 02:14:33 UTC (4,915 KB)
[v5] Sun, 20 Oct 2024 15:41:42 UTC (6,523 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.