Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Jul 2024 (v1), last revised 10 Aug 2025 (this version, v2)]
Title:Learning Multi-view Anomaly Detection with Efficient Adaptive Selection
View PDF HTML (experimental)Abstract:This study explores the recently proposed and challenging multi-view Anomaly Detection (AD) task. Single-view tasks will encounter blind spots from other perspectives, resulting in inaccuracies in sample-level prediction. Therefore, we introduce the Multi-View Anomaly Detection (MVAD) approach, which learns and integrates features from multi-views. Specifically, we propose a Multi-View Adaptive Selection (MVAS) algorithm for feature learning and fusion across multiple views. The feature maps are divided into neighbourhood attention windows to calculate a semantic correlation matrix between single-view windows and all other views, which is an attention mechanism conducted for each single-view window and the top-k most correlated multi-view windows. Adjusting the window sizes and top-k can minimise the complexity to O((hw)^4/3). Extensive experiments on the Real-IAD dataset under the multi-class setting validate the effectiveness of our approach, achieving state-of-the-art performance with an average improvement of +2.5 across 10 metrics at the sample/image/pixel levels, using only 18M parameters and requiring fewer FLOPs and training time. The codes are available at this https URL.
Submission history
From: Haoyang He [view email][v1] Tue, 16 Jul 2024 17:26:34 UTC (7,636 KB)
[v2] Sun, 10 Aug 2025 15:26:51 UTC (9,408 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.