Computer Science > Information Theory
[Submitted on 16 Jul 2024]
Title:Scalable and Reliable Over-the-Air Federated Edge Learning
View PDF HTML (experimental)Abstract:Federated edge learning (FEEL) has emerged as a core paradigm for large-scale optimization. However, FEEL still suffers from a communication bottleneck due to the transmission of high-dimensional model updates from the clients to the federator. Over-the-air computation (AirComp) leverages the additive property of multiple-access channels by aggregating the clients' updates over the channel to save communication resources. While analog uncoded transmission can benefit from the increased signal-to-noise ratio (SNR) due to the simultaneous transmission of many clients, potential errors may severely harm the learning process for small SNRs. To alleviate this problem, channel coding approaches were recently proposed for AirComp in FEEL. However, their error-correction capability degrades with an increasing number of clients. We propose a digital lattice-based code construction with constant error-correction capabilities in the number of clients, and compare to nested-lattice codes, well-known for their optimal rate and power efficiency in the point-to-point AWGN channel.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.