Computer Science > Machine Learning
[Submitted on 16 Jul 2024]
Title:Global atmospheric data assimilation with multi-modal masked autoencoders
View PDF HTML (experimental)Abstract:Global data assimilation enables weather forecasting at all scales and provides valuable data for studying the Earth system. However, the computational demands of physics-based algorithms used in operational systems limits the volume and diversity of observations that are assimilated. Here, we present "EarthNet", a multi-modal foundation model for data assimilation that learns to predict a global gap-filled atmospheric state solely from satellite observations. EarthNet is trained as a masked autoencoder that ingests a 12 hour sequence of observations and learns to fill missing data from other sensors. We show that EarthNet performs a form of data assimilation producing a global 0.16 degree reanalysis dataset of 3D atmospheric temperature and humidity at a fraction of the time compared to operational systems. It is shown that the resulting reanalysis dataset reproduces climatology by evaluating a 1 hour forecast background state against observations. We also show that our 3D humidity predictions outperform MERRA-2 and ERA5 reanalyses by 10% to 60% between the middle troposphere and lower stratosphere (5 to 20 km altitude) and our 3D temperature and humidity are statistically equivalent to the Microwave integrated Retrieval System (MiRS) observations at nearly every level of the atmosphere. Our results indicate significant promise in using EarthNet for high-frequency data assimilation and global weather forecasting.
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.