Computer Science > Networking and Internet Architecture
[Submitted on 11 Jul 2024]
Title:FlexCross: High-Speed and Flexible Packet Processing via a Crosspoint-Queued Crossbar
View PDF HTML (experimental)Abstract:The fast pace at which new online services emerge leads to a rapid surge in the volume of network traffic. A recent approach that the research community has proposed to tackle this issue is in-network computing, which means that network devices perform more computations than before. As a result, processing demands become more varied, creating the need for flexible packet-processing architectures. State-of-the-art approaches provide a high degree of flexibility at the expense of performance for complex applications, or they ensure high performance but only for specific use cases. In order to address these limitations, we propose FlexCross. This flexible packet-processing design can process network traffic with diverse processing requirements at over 100 Gbit/s on FPGAs. Our design contains a crosspoint-queued crossbar that enables the execution of complex applications by forwarding incoming packets to the required processing engines in the specified sequence. The crossbar consists of distributed logic blocks that route incoming packets to the specified targets and resolve contentions for shared resources, as well as memory blocks for packet buffering. We implemented a prototype of FlexCross in Verilog and evaluated it via cycle-accurate register-transfer level simulations. We also conducted test runs with real-world network traffic on an FPGA. The evaluation results demonstrate that FlexCross outperforms state-of-the-art flexible packet-processing designs for different traffic loads and scenarios. The synthesis results show that our prototype consumes roughly 21% of the resources on a Virtex XCU55 UltraScale+ FPGA.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.