Electrical Engineering and Systems Science > Systems and Control
[Submitted on 11 Jul 2024]
Title:Performance-Barrier Event-Triggered Control of a Class of Reaction-Diffusion PDEs
View PDF HTML (experimental)Abstract:We employ the recent performance-barrier event-triggered control (P-ETC) for achieving global exponential convergence of a class of reaction-diffusion PDEs via PDE backstepping control. Rather than insisting on a strictly monotonic decrease of the Lyapunov function for the closed-loop system, P-ETC allows the Lyapunov function to increase as long as it remains below an acceptable performance-barrier. This approach integrates a performance residual, the difference between the value of the performance-barrier and the Lyapunov function, into the triggering mechanism. The integration adds flexibility and results in fewer control updates than with regular ETC (R-ETC) that demands a monotonic decrease of the Lyapunov function. Our P-ETC PDE backstepping design ensures global exponential convergence of the closed-loop system in the spatial L^2 norm, without encountering Zeno phenomenon. To avoid continuous monitoring of the triggering function that generates events, we develop periodic event-triggered and self-triggered variants (P-PETC and P-STC, respectively) of the P-ETC. The P-PETC only requires periodic evaluation of the triggering function whereas the P-STC preemptively computes the time of the next event at the current event time using the system model and continuously available system states. The P-PETC and P-STC also ensure a Zeno-free behavior and deliver performance equivalent to that of the continuous-time P-ETC which requires continuous evaluation of the triggering function, in addition to the continuous sensing of the state. We provide numerical simulations to illustrate the proposed technique and to compare it with R-ETC associated with strictly decreasing Lyapunov functions.
Submission history
From: Bhathiya Rathnayake [view email][v1] Thu, 11 Jul 2024 04:46:28 UTC (969 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.