Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 May 2024]
Title:OMuSense-23: A Multimodal Dataset for Contactless Breathing Pattern Recognition and Biometric Analysis
View PDFAbstract:In the domain of non-contact biometrics and human activity recognition, the lack of a versatile, multimodal dataset poses a significant bottleneck. To address this, we introduce the Oulu Multi Sensing (OMuSense-23) dataset that includes biosignals obtained from a mmWave radar, and an RGB-D camera. The dataset features data from 50 individuals in three distinct poses -- standing, sitting, and lying down -- each featuring four specific breathing pattern activities: regular breathing, reading, guided breathing, and apnea, encompassing both typical situations (e.g., sitting with normal breathing) and critical conditions (e.g., lying down without breathing). In our work, we present a detailed overview of the OMuSense-23 dataset, detailing the data acquisition protocol, describing the process for each participant. In addition, we provide, a baseline evaluation of several data analysis tasks related to biometrics, breathing pattern recognition and pose identification. Our results achieve a pose identification accuracy of 87\% and breathing pattern activity recognition of 83\% using features extracted from biosignals. The OMuSense-23 dataset is publicly available as resource for other researchers and practitioners in the field.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.