Mathematics > Numerical Analysis
[Submitted on 1 Jul 2024 (v1), last revised 12 Oct 2024 (this version, v2)]
Title:Straggler-tolerant stationary methods for linear systems
View PDF HTML (experimental)Abstract:In this paper, we consider the iterative solution of linear algebraic equations under the condition that matrix-vector products with the coefficient matrix are computed only partially. At the same time, non-computed entries are set to zeros. We assume that both the number of computed entries and their associated row index set are random variables, with the row index set sampled uniformly given the number of computed entries. This model of computations is realized in hybrid cloud computing architectures following the controller-worker distributed model under the influence of straggling workers. We propose straggler-tolerant Richardson iteration scheme and Chebyshev semi-iterative schemes, and prove sufficient conditions for their convergence in expectation. Numerical experiments verify the presented theoretical results as well as the effectiveness of the proposed schemes on a few sparse matrix problems.
Submission history
From: Yuanzhe Xi [view email][v1] Mon, 1 Jul 2024 08:59:39 UTC (855 KB)
[v2] Sat, 12 Oct 2024 07:33:28 UTC (1,244 KB)
Current browse context:
math.NA
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.