Physics > Fluid Dynamics
[Submitted on 30 Jun 2024 (v1), last revised 19 May 2025 (this version, v2)]
Title:Generative prediction of flow fields around an obstacle using the diffusion model
View PDF HTML (experimental)Abstract:We propose a geometry-to-flow diffusion model that utilizes obstacle shape as input to predict a flow field around an obstacle. The model is based on a learnable Markov transition kernel to recover the data distribution from the Gaussian distribution. The Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step, implemented via a U-Net. A cross-attention mechanism incorporates the geometry as a prompt. We train the geometry-to-flow diffusion model using a dataset of flows around simple obstacles, including circles, ellipses, rectangles, and triangles. For comparison, two CNN-based models and a VAE model are trained on the same dataset. Tests are carried out on flows around obstacles with simple and complex geometries, representing interpolation and generalization on the geometry condition, respectively. To evaluate performance under demanding conditions, the test set incorporates scenarios including crosses and the characters `PKU.' Generated flow fields show that the geometry-to-flow diffusion model is superior to the CNN-based models and the VAE model in predicting instantaneous flow fields and handling complex geometries. Quantitative analysis of the accuracy and divergence demonstrates the model's robustness.
Submission history
From: Zhen Lu [view email][v1] Sun, 30 Jun 2024 15:48:57 UTC (4,388 KB)
[v2] Mon, 19 May 2025 10:07:07 UTC (6,389 KB)
Current browse context:
physics.flu-dyn
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.