Computer Science > Computers and Society
[Submitted on 20 Jun 2024]
Title:AuditMAI: Towards An Infrastructure for Continuous AI Auditing
View PDF HTML (experimental)Abstract:Artificial Intelligence (AI) Auditability is a core requirement for achieving responsible AI system design. However, it is not yet a prominent design feature in current applications. Existing AI auditing tools typically lack integration features and remain as isolated approaches. This results in manual, high-effort, and mostly one-off AI audits, necessitating alternative methods. Inspired by other domains such as finance, continuous AI auditing is a promising direction to conduct regular assessments of AI systems. The issue remains, however, since the methods for continuous AI auditing are not mature yet at the moment. To address this gap, we propose the Auditability Method for AI (AuditMAI), which is intended as a blueprint for an infrastructure towards continuous AI auditing. For this purpose, we first clarified the definition of AI auditability based on literature. Secondly, we derived requirements from two industrial use cases for continuous AI auditing tool support. Finally, we developed AuditMAI and discussed its elements as a blueprint for a continuous AI auditability infrastructure.
Submission history
From: Laura Waltersdorfer [view email][v1] Thu, 20 Jun 2024 12:11:53 UTC (339 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.