Computer Science > Machine Learning
[Submitted on 20 Jun 2024]
Title:Bayesian Inverse Reinforcement Learning for Non-Markovian Rewards
View PDF HTML (experimental)Abstract:Inverse reinforcement learning (IRL) is the problem of inferring a reward function from expert behavior. There are several approaches to IRL, but most are designed to learn a Markovian reward. However, a reward function might be non-Markovian, depending on more than just the current state, such as a reward machine (RM). Although there has been recent work on inferring RMs, it assumes access to the reward signal, absent in IRL. We propose a Bayesian IRL (BIRL) framework for inferring RMs directly from expert behavior, requiring significant changes to the standard framework. We define a new reward space, adapt the expert demonstration to include history, show how to compute the reward posterior, and propose a novel modification to simulated annealing to maximize this posterior. We demonstrate that our method performs well when optimizing according to its inferred reward and compares favorably to an existing method that learns exclusively binary non-Markovian rewards.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.