Mathematics > Numerical Analysis
[Submitted on 19 Jun 2024 (v1), last revised 29 Jun 2024 (this version, v2)]
Title:An extension of the low-rank Lyapunov ADI to non-zero initial values and its applications
View PDFAbstract:We derive the Alternating-Direction Implicit (ADI) method based on a commuting operator split and apply the results to the continuous time algebraic Lyapunov equation with low-rank constant term and approximate solution. Previously, it has been mandatory to start the low-rank ADI (LR-ADI) with an all-zero initial value. Our approach retains the known efficient iteration schemes of low-rank increments and residual to arbitrary low-rank initial values for the LR-ADI method. We further generalize some of the known properties of the LR-ADI for Lyapunov equations to larger classes of algorithms or problems.
We investigate the performance of arbitrary initial values using two outer iterations in which LR-ADI is typically called. First, we solve an algebraic Riccati equation with the Newton method. Second, we solve a differential Riccati equation with a first-order Rosenbrock method. Numerical experiments confirm that the proposed new initial value of the alternating-directions implicit (ADI) can lead to a significant reduction in the total number of ADI steps, while also showing a 17% and 8x speed-up over the zero initial value for the two equation types, respectively.
Submission history
From: Jonas Schulze [view email][v1] Wed, 19 Jun 2024 11:58:40 UTC (77 KB)
[v2] Sat, 29 Jun 2024 20:44:44 UTC (77 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.