Computer Science > Machine Learning
[Submitted on 15 Jun 2024]
Title:A Unified Graph Selective Prompt Learning for Graph Neural Networks
View PDF HTML (experimental)Abstract:In recent years, graph prompt learning/tuning has garnered increasing attention in adapting pre-trained models for graph representation learning. As a kind of universal graph prompt learning method, Graph Prompt Feature (GPF) has achieved remarkable success in adapting pre-trained models for Graph Neural Networks (GNNs). By fixing the parameters of a pre-trained GNN model, the aim of GPF is to modify the input graph data by adding some (learnable) prompt vectors into graph node features to better align with the downstream tasks on the smaller dataset. However, existing GPFs generally suffer from two main limitations. First, GPFs generally focus on node prompt learning which ignore the prompting for graph edges. Second, existing GPFs generally conduct the prompt learning on all nodes equally which fails to capture the importances of different nodes and may perform sensitively w.r.t noisy nodes in aligning with the downstream tasks. To address these issues, in this paper, we propose a new unified Graph Selective Prompt Feature learning (GSPF) for GNN fine-tuning. The proposed GSPF integrates the prompt learning on both graph node and edge together, which thus provides a unified prompt model for the graph data. Moreover, it conducts prompt learning selectively on nodes and edges by concentrating on the important nodes and edges for prompting which thus make our model be more reliable and compact. Experimental results on many benchmark datasets demonstrate the effectiveness and advantages of the proposed GSPF method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.