Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Jun 2024]
Title:A Comprehensive Survey on Machine Learning Driven Material Defect Detection: Challenges, Solutions, and Future Prospects
View PDF HTML (experimental)Abstract:Material defects (MD) represent a primary challenge affecting product performance and giving rise to safety issues in related products. The rapid and accurate identification and localization of MD constitute crucial research endeavours in addressing contemporary challenges associated with MD. Although conventional non-destructive testing methods such as ultrasonic and X-ray approaches have mitigated issues related to low efficiency in manual inspections, they struggle to meet the diverse requirements of high precision, real-time speed, automation, and intelligence. In recent years, propelled by the swift advancement of machine learning (ML) technologies, particularly exemplified by deep learning, ML has swiftly emerged as the core technology and a prominent research direction for material defect detection (MDD). Through a comprehensive review of the latest literature, we systematically survey the ML techniques applied in MDD into five categories: unsupervised learning, supervised learning, semi-supervised learning, reinforcement learning, and generative learning. We provide a detailed analysis of the main principles and techniques used, together with the advantages and potential challenges associated with these techniques. Furthermore, the survey focuses on the techniques for defect detection in composite materials, which are important types of materials enjoying increasingly wide application in various industries such as aerospace, automotive, construction, and renewable energy. Finally, the survey explores potential future directions in MDD utilizing ML technologies. This comprehensive survey not only consolidates existing literature on ML-based MDD technologies but also serves as a foundational reference for future researchers and industrial practitioners, providing valuable insights and guidance in developing advanced and efficient MDD systems.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.