Computer Science > Machine Learning
[Submitted on 9 Jun 2024 (v1), last revised 3 Dec 2024 (this version, v3)]
Title:Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises
View PDF HTML (experimental)Abstract:Deep learning (DL)-based Semantic Communications (SemCom) is becoming critical to maximize overall efficiency of communication networks. Nevertheless, SemCom is sensitive to wireless channel uncertainties, source outliers, and suffer from poor generalization bottlenecks. To address the mentioned challenges, this paper develops a latent diffusion model-enabled SemCom system with three key contributions, i.e., i) to handle potential outliers in the source data, semantic errors obtained by projected gradient descent based on the vulnerabilities of DL models, are utilized to update the parameters and obtain an outlier-robust encoder, ii) a lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter and is placed before the decoder at the receiver, enabling adaptation for out-of-distribution data and enhancing human-perceptual quality, and iii) an end-to-end consistency distillation (EECD) strategy is used to distill the diffusion models trained in latent space, enabling deterministic single or few-step low-latency denoising in various noisy channels while maintaining high semantic quality. Extensive numerical experiments across different datasets demonstrate the superiority of the proposed SemCom system, consistently proving its robustness to outliers, the capability to transmit data with unknown distributions, and the ability to perform real-time channel denoising tasks while preserving high human perceptual quality, outperforming the existing denoising approaches in semantic metrics like learned perceptual image path similarity (LPIPS).
Submission history
From: Jianhua Pei [view email][v1] Sun, 9 Jun 2024 23:39:31 UTC (7,073 KB)
[v2] Mon, 24 Jun 2024 23:41:23 UTC (9,586 KB)
[v3] Tue, 3 Dec 2024 09:49:07 UTC (9,653 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.