Computer Science > Computation and Language
[Submitted on 26 May 2024]
Title:A Preliminary Empirical Study on Prompt-based Unsupervised Keyphrase Extraction
View PDF HTML (experimental)Abstract:Pre-trained large language models can perform natural language processing downstream tasks by conditioning on human-designed prompts. However, a prompt-based approach often requires "prompt engineering" to design different prompts, primarily hand-crafted through laborious trial and error, requiring human intervention and expertise. It is a challenging problem when constructing a prompt-based keyphrase extraction method. Therefore, we investigate and study the effectiveness of different prompts on the keyphrase extraction task to verify the impact of the cherry-picked prompts on the performance of extracting keyphrases. Extensive experimental results on six benchmark keyphrase extraction datasets and different pre-trained large language models demonstrate that (1) designing complex prompts may not necessarily be more effective than designing simple prompts; (2) individual keyword changes in the designed prompts can affect the overall performance; (3) designing complex prompts achieve better performance than designing simple prompts when facing long documents.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.