Computer Science > Machine Learning
[Submitted on 23 May 2024]
Title:A classification model based on a population of hypergraphs
View PDF HTML (experimental)Abstract:This paper introduces a novel hypergraph classification algorithm. The use of hypergraphs in this framework has been widely studied. In previous work, hypergraph models are typically constructed using distance or attribute based methods. That is, hyperedges are generated by connecting a set of samples which are within a certain distance or have a common attribute. These methods however, do not often focus on multi-way interactions directly. The algorithm provided in this paper looks to address this problem by constructing hypergraphs which explore multi-way interactions of any order. We also increase the performance and robustness of the algorithm by using a population of hypergraphs. The algorithm is evaluated on two datasets, demonstrating promising performance compared to a generic random forest classification algorithm.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.