Computer Science > Machine Learning
[Submitted on 23 May 2024]
Title:MultiCast: Zero-Shot Multivariate Time Series Forecasting Using LLMs
View PDF HTML (experimental)Abstract:Predicting future values in multivariate time series is vital across various domains. This work explores the use of large language models (LLMs) for this task. However, LLMs typically handle one-dimensional data. We introduce MultiCast, a zero-shot LLM-based approach for multivariate time series forecasting. It allows LLMs to receive multivariate time series as input, through three novel token multiplexing solutions that effectively reduce dimensionality while preserving key repetitive patterns. Additionally, a quantization scheme helps LLMs to better learn these patterns, while significantly reducing token use for practical applications. We showcase the performance of our approach in terms of RMSE and execution time against state-of-the-art approaches on three real-world datasets.
Submission history
From: Georgios Chatzigeorgakidis [view email][v1] Thu, 23 May 2024 16:16:00 UTC (13,367 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.