Computer Science > Networking and Internet Architecture
[Submitted on 16 May 2024]
Title:Low-latency Symbol-Synchronous Communication for Multi-hop Sensor Networks
View PDF HTML (experimental)Abstract:Wireless sensor networks (WSNs) have received great interest due to their scalability, energy efficiency, and low-cost deployment. By utilizing multi-hop communication, WSNs can cover a wide area using low transmission power without the need for any communication infrastructure. Traditionally, WSNs rely on store-and-forward routing protocols and Time Division Multiple Access (TDMA)-based schedules that avoid interference between different wireless nodes. However, emerging challenging scenarios, such as the industrial Internet of Things (IoT) and robotic swarms, impose strict latency and reliability requirements, which traditional approaches cannot fulfill. In this paper, we propose a novel symbol-synchronous transmission design that provides reliable low-latency communication with a reasonable data rate on classical sub-6GHz RF frequency bands (e.g., the 2.4GHz ISM band). Instead of avoiding overlapping transmissions, the proposed scheme benefits from concurrent transmissions. Using simulation in MATLAB, we prove that the proposed design allows achieving a wire-like delay of 5ms for a 512-bit packet over multiple hops with only a 0.3% latency increase per extra hop and a low bit error rate (BER) of 0.04%. Compared to similar state-of-the-art approaches it can achieve a significantly higher data rate of 100kbps, which is expected to increase further with future improvements of the system.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.