Computer Science > Machine Learning
[Submitted on 14 May 2024]
Title:A Click-Through Rate Prediction Method Based on Cross-Importance of Multi-Order Features
View PDF HTML (experimental)Abstract:Most current click-through rate prediction(CTR)models create explicit or implicit high-order feature crosses through Hadamard product or inner product, with little attention to the importance of feature crossing; only few models are either limited to the second-order explicit feature crossing, implicitly to high-order feature crossing, or can learn the importance of high-order explicit feature crossing but fail to provide good interpretability for the model. This paper proposes a new model, FiiNet (Multiple Order Feature Interaction Importance Neural Networks). The model first uses the selective kernel network (SKNet) to explicitly construct multi-order feature crosses. It dynamically learns the importance of feature interaction combinations in a fine grained manner, increasing the attention weight of important feature cross combinations and reducing the weight of featureless crosses. To verify that the FiiNet model can dynamically learn the importance of feature interaction combinations in a fine-grained manner and improve the model's recommendation performance and interpretability, this paper compares it with many click-through rate prediction models on two real datasets, proving that the FiiNet model incorporating the selective kernel network can effectively improve the recommendation effect and provide better interpretability. FiiNet model implementations are available in PyTorch.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.