Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2405.06133

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Distributed, Parallel, and Cluster Computing

arXiv:2405.06133 (cs)
[Submitted on 9 May 2024]

Title:Advancing Anomaly Detection in Computational Workflows with Active Learning

Authors:Krishnan Raghavan, George Papadimitriou, Hongwei Jin, Anirban Mandal, Mariam Kiran, Prasanna Balaprakash, Ewa Deelman
View a PDF of the paper titled Advancing Anomaly Detection in Computational Workflows with Active Learning, by Krishnan Raghavan and 6 other authors
View PDF HTML (experimental)
Abstract:A computational workflow, also known as workflow, consists of tasks that are executed in a certain order to attain a specific computational campaign. Computational workflows are commonly employed in science domains, such as physics, chemistry, genomics, to complete large-scale experiments in distributed and heterogeneous computing environments. However, running computations at such a large scale makes the workflow applications prone to failures and performance degradation, which can slowdown, stall, and ultimately lead to workflow failure. Learning how these workflows behave under normal and anomalous conditions can help us identify the causes of degraded performance and subsequently trigger appropriate actions to resolve them. However, learning in such circumstances is a challenging task because of the large volume of high-quality historical data needed to train accurate and reliable models. Generating such datasets not only takes a lot of time and effort but it also requires a lot of resources to be devoted to data generation for training purposes. Active learning is a promising approach to this problem. It is an approach where the data is generated as required by the machine learning model and thus it can potentially reduce the training data needed to derive accurate models. In this work, we present an active learning approach that is supported by an experimental framework, Poseidon-X, that utilizes a modern workflow management system and two cloud testbeds. We evaluate our approach using three computational workflows. For one workflow we run an end-to-end live active learning experiment, for the other two we evaluate our active learning algorithms using pre-captured data traces provided by the Flow-Bench benchmark. Our findings indicate that active learning not only saves resources, but it also improves the accuracy of the detection of anomalies.
Subjects: Distributed, Parallel, and Cluster Computing (cs.DC)
Cite as: arXiv:2405.06133 [cs.DC]
  (or arXiv:2405.06133v1 [cs.DC] for this version)
  https://doi.org/10.48550/arXiv.2405.06133
arXiv-issued DOI via DataCite

Submission history

From: George Papadimitriou [view email]
[v1] Thu, 9 May 2024 22:54:36 UTC (1,409 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Advancing Anomaly Detection in Computational Workflows with Active Learning, by Krishnan Raghavan and 6 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
cs.DC
< prev   |   next >
new | recent | 2024-05
Change to browse by:
cs

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack