Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 May 2024]
Title:Obtaining Favorable Layouts for Multiple Object Generation
View PDF HTML (experimental)Abstract:Large-scale text-to-image models that can generate high-quality and diverse images based on textual prompts have shown remarkable success. These models aim ultimately to create complex scenes, and addressing the challenge of multi-subject generation is a critical step towards this goal. However, the existing state-of-the-art diffusion models face difficulty when generating images that involve multiple subjects. When presented with a prompt containing more than one subject, these models may omit some subjects or merge them together. To address this challenge, we propose a novel approach based on a guiding principle. We allow the diffusion model to initially propose a layout, and then we rearrange the layout grid. This is achieved by enforcing cross-attention maps (XAMs) to adhere to proposed masks and by migrating pixels from latent maps to new locations determined by us. We introduce new loss terms aimed at reducing XAM entropy for clearer spatial definition of subjects, reduce the overlap between XAMs, and ensure that XAMs align with their respective masks. We contrast our approach with several alternative methods and show that it more faithfully captures the desired concepts across a variety of text prompts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.