Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 May 2024 (v1), last revised 9 Aug 2024 (this version, v2)]
Title:Exploring Self-Supervised Vision Transformers for Deepfake Detection: A Comparative Analysis
View PDF HTML (experimental)Abstract:This paper investigates the effectiveness of self-supervised pre-trained vision transformers (ViTs) compared to supervised pre-trained ViTs and conventional neural networks (ConvNets) for detecting facial deepfake images and videos. It examines their potential for improved generalization and explainability, especially with limited training data. Despite the success of transformer architectures in various tasks, the deepfake detection community is hesitant to use large ViTs as feature extractors due to their perceived need for extensive data and suboptimal generalization with small datasets. This contrasts with ConvNets, which are already established as robust feature extractors. Additionally, training ViTs from scratch requires significant resources, limiting their use to large companies. Recent advancements in self-supervised learning (SSL) for ViTs, like masked autoencoders and DINOs, show adaptability across diverse tasks and semantic segmentation capabilities. By leveraging SSL ViTs for deepfake detection with modest data and partial fine-tuning, we find comparable adaptability to deepfake detection and explainability via the attention mechanism. Moreover, partial fine-tuning of ViTs is a resource-efficient option.
Submission history
From: Hong Huy Nguyen [view email][v1] Wed, 1 May 2024 07:16:49 UTC (1,174 KB)
[v2] Fri, 9 Aug 2024 08:38:35 UTC (642 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.