Statistics > Methodology
[Submitted on 29 Apr 2024 (v1), last revised 16 Jul 2024 (this version, v2)]
Title:Identification and estimation of causal effects using non-concurrent controls in platform trials
View PDF HTML (experimental)Abstract:Platform trials are multi-arm designs that simultaneously evaluate multiple treatments for a single disease within the same overall trial structure. Unlike traditional randomized controlled trials, they allow treatment arms to enter and exit the trial at distinct times while maintaining a control arm throughout. This control arm comprises both concurrent controls, where participants are randomized concurrently to either the treatment or control arm, and non-concurrent controls, who enter the trial when the treatment arm under study is unavailable. While flexible, platform trials introduce the challenge of using non-concurrent controls, raising questions about estimating treatment effects. Specifically, which estimands should be targeted? Under what assumptions can these estimands be identified and estimated? Are there any efficiency gains? In this paper, we discuss issues related to the identification and estimation assumptions of common choices of estimand. We conclude that the most robust strategy to increase efficiency without imposing unwarranted assumptions is to target the concurrent average treatment effect (cATE), the ATE among only concurrent units, using a covariate-adjusted doubly robust estimator. Our studies suggest that, for the purpose of obtaining efficiency gains, collecting important prognostic variables is more important than relying on non-concurrent controls. We also discuss the perils of targeting ATE due to an untestable extrapolation assumption that will often be invalid. We provide simulations illustrating our points and an application to the ACTT platform trial, resulting in a 20% improvement in precision.
Submission history
From: Michele Santacatterina [view email][v1] Mon, 29 Apr 2024 21:34:04 UTC (804 KB)
[v2] Tue, 16 Jul 2024 16:08:57 UTC (817 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.