Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 29 Apr 2024]
Title:Dflow, a Python framework for constructing cloud-native AI-for-Science workflows
View PDF HTML (experimental)Abstract:In the AI-for-science era, scientific computing scenarios such as concurrent learning and high-throughput computing demand a new generation of infrastructure that supports scalable computing resources and automated workflow management on both cloud and high-performance supercomputers. Here we introduce Dflow, an open-source Python toolkit designed for scientists to construct workflows with simple programming interfaces. It enables complex process control and task scheduling across a distributed, heterogeneous infrastructure, leveraging containers and Kubernetes for flexibility. Dflow is highly observable and can scale to thousands of concurrent nodes per workflow, enhancing the efficiency of complex scientific computing tasks. The basic unit in Dflow, known as an Operation (OP), is reusable and independent of the underlying infrastructure or context. Dozens of workflow projects have been developed based on Dflow, spanning a wide range of projects. We anticipate that the reusability of Dflow and its components will encourage more scientists to publish their workflows and OP components. These components, in turn, can be adapted and reused in various contexts, fostering greater collaboration and innovation in the scientific community.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.