Computer Science > Computation and Language
[Submitted on 25 Apr 2024 (v1), last revised 31 May 2024 (this version, v2)]
Title:Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically
View PDF HTML (experimental)Abstract:Transformers trained on natural language data have been shown to learn its hierarchical structure and generalize to sentences with unseen syntactic structures without explicitly encoding any structural bias. In this work, we investigate sources of inductive bias in transformer models and their training that could cause such generalization behavior to emerge. We extensively experiment with transformer models trained on multiple synthetic datasets and with different training objectives and show that while other objectives e.g. sequence-to-sequence modeling, prefix language modeling, often failed to lead to hierarchical generalization, models trained with the language modeling objective consistently learned to generalize hierarchically. We then conduct pruning experiments to study how transformers trained with the language modeling objective encode hierarchical structure. When pruned, we find joint existence of subnetworks within the model with different generalization behaviors (subnetworks corresponding to hierarchical structure and linear order). Finally, we take a Bayesian perspective to further uncover transformers' preference for hierarchical generalization: We establish a correlation between whether transformers generalize hierarchically on a dataset and whether the simplest explanation of that dataset is provided by a hierarchical grammar compared to regular grammars exhibiting linear generalization.
Submission history
From: Kabir Ahuja [view email][v1] Thu, 25 Apr 2024 07:10:29 UTC (16,731 KB)
[v2] Fri, 31 May 2024 23:47:15 UTC (16,733 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.