Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Apr 2024 (v1), last revised 13 Nov 2024 (this version, v2)]
Title:Into the Fog: Evaluating Robustness of Multiple Object Tracking
View PDF HTML (experimental)Abstract:State-of-the-art Multiple Object Tracking (MOT) approaches have shown remarkable performance when trained and evaluated on current benchmarks. However, these benchmarks primarily consist of clear weather scenarios, overlooking adverse atmospheric conditions such as fog, haze, smoke and dust. As a result, the robustness of trackers against these challenging conditions remains underexplored. To address this gap, we introduce physics-based volumetric fog simulation method for arbitrary MOT datasets, utilizing frame-by-frame monocular depth estimation and a fog formation optical model. We enhance our simulation by rendering both homogeneous and heterogeneous fog and propose to use the dark channel prior method to estimate atmospheric light, showing promising results even in night and indoor scenes. We present the leading benchmark MOTChallenge (third release) augmented with fog (smoke for indoor scenes) of various intensities and conduct a comprehensive evaluation of MOT methods, revealing their limitations under fog and fog-like challenges.
Submission history
From: Nadezda Kirillova [view email][v1] Fri, 12 Apr 2024 21:41:50 UTC (9,030 KB)
[v2] Wed, 13 Nov 2024 14:36:47 UTC (9,217 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.