Computer Science > Information Retrieval
[Submitted on 10 Apr 2024 (v1), last revised 16 Jun 2024 (this version, v3)]
Title:Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders
View PDF HTML (experimental)Abstract:Existing cross-encoder re-rankers can be categorized as pointwise, pairwise, or listwise models. Pair- and listwise models allow passage interactions, which usually makes them more effective than pointwise models but also less efficient and less robust to input order permutations. To enable efficient permutation-invariant passage interactions during re-ranking, we propose a new cross-encoder architecture with inter-passage attention: the Set-Encoder. In Cranfield-style experiments on TREC Deep Learning and TIREx, the Set-Encoder is as effective as state-of-the-art listwise models while improving efficiency and robustness to input permutations. Interestingly, a pointwise model is similarly effective, but when additionally requiring the models to consider novelty, the Set-Encoder is more effective than its pointwise counterpart and retains its advantageous properties compared to other listwise models. Our code and models are publicly available at this https URL.
Submission history
From: Ferdinand Schlatt [view email][v1] Wed, 10 Apr 2024 11:04:24 UTC (794 KB)
[v2] Thu, 11 Apr 2024 13:00:18 UTC (795 KB)
[v3] Sun, 16 Jun 2024 12:30:30 UTC (747 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.