Electrical Engineering and Systems Science > Systems and Control
[Submitted on 10 Apr 2024 (v1), last revised 8 Sep 2024 (this version, v2)]
Title:On Bounds for Greedy Schemes in String Optimization based on Greedy Curvatures
View PDF HTML (experimental)Abstract:We consider the celebrated bound introduced by Conforti and Cornuéjols (1984) for greedy schemes in submodular optimization. The bound assumes a submodular function defined on a collection of sets forming a matroid and is based on greedy curvature. We show that the bound holds for a very general class of string problems that includes maximizing submodular functions over set matroids as a special case. We also derive a bound that is computable in the sense that they depend only on quantities along the greedy trajectory. We prove that our bound is superior to the greedy curvature bound of Conforti and Cornuéjols. In addition, our bound holds under a condition that is weaker than submodularity.
Submission history
From: Bowen Li [view email][v1] Wed, 10 Apr 2024 01:12:20 UTC (175 KB)
[v2] Sun, 8 Sep 2024 08:28:33 UTC (1,191 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.