Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Apr 2024]
Title:D2SL: Decouple Defogging and Semantic Learning for Foggy Domain-Adaptive Segmentation
View PDF HTML (experimental)Abstract:We investigated domain adaptive semantic segmentation in foggy weather scenarios, which aims to enhance the utilization of unlabeled foggy data and improve the model's adaptability to foggy conditions. Current methods rely on clear images as references, jointly learning defogging and segmentation for foggy images. Despite making some progress, there are still two main drawbacks: (1) the coupling of segmentation and defogging feature representations, resulting in a decrease in semantic representation capability, and (2) the failure to leverage real fog priors in unlabeled foggy data, leading to insufficient model generalization ability. To address these issues, we propose a novel training framework, Decouple Defogging and Semantic learning, called D2SL, aiming to alleviate the adverse impact of defogging tasks on the final segmentation task. In this framework, we introduce a domain-consistent transfer strategy to establish a connection between defogging and segmentation tasks. Furthermore, we design a real fog transfer strategy to improve defogging effects by fully leveraging the fog priors from real foggy images. Our approach enhances the semantic representations required for segmentation during the defogging learning process and maximizes the representation capability of fog invariance by effectively utilizing real fog data. Comprehensive experiments validate the effectiveness of the proposed method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.