close this message
arXiv smileybones

Happy Birthday to arXiv!

It's our birthday — woohoo! On August 14th, 1991, the very first paper was submitted to arXiv. That's 34 years of open science! Give today and help support arXiv for many birthdays to come.

Give a gift!
Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2404.02452

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Computation and Language

arXiv:2404.02452 (cs)
[Submitted on 3 Apr 2024]

Title:Adaptive Cross-lingual Text Classification through In-Context One-Shot Demonstrations

Authors:Emilio Villa-Cueva, A. Pastor López-Monroy, Fernando Sánchez-Vega, Thamar Solorio
View a PDF of the paper titled Adaptive Cross-lingual Text Classification through In-Context One-Shot Demonstrations, by Emilio Villa-Cueva and 3 other authors
View PDF HTML (experimental)
Abstract:Zero-Shot Cross-lingual Transfer (ZS-XLT) utilizes a model trained in a source language to make predictions in another language, often with a performance loss. To alleviate this, additional improvements can be achieved through subsequent adaptation using examples in the target language. In this paper, we exploit In-Context Tuning (ICT) for One-Shot Cross-lingual transfer in the classification task by introducing In-Context Cross-lingual Transfer (IC-XLT). The novel concept involves training a model to learn from context examples and subsequently adapting it during inference to a target language by prepending a One-Shot context demonstration in that language. Our results show that IC-XLT successfully leverages target-language examples to improve the cross-lingual capabilities of the evaluated mT5 model, outperforming prompt-based models in the Zero and Few-shot scenarios adapted through fine-tuning. Moreover, we show that when source-language data is limited, the fine-tuning framework employed for IC-XLT performs comparably to prompt-based fine-tuning with significantly more training data in the source language.
Comments: Accepted to NAACL 2024
Subjects: Computation and Language (cs.CL)
Cite as: arXiv:2404.02452 [cs.CL]
  (or arXiv:2404.02452v1 [cs.CL] for this version)
  https://doi.org/10.48550/arXiv.2404.02452
arXiv-issued DOI via DataCite

Submission history

From: Emilio Villa-Cueva [view email]
[v1] Wed, 3 Apr 2024 04:40:57 UTC (9,931 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Adaptive Cross-lingual Text Classification through In-Context One-Shot Demonstrations, by Emilio Villa-Cueva and 3 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
cs.CL
< prev   |   next >
new | recent | 2024-04
Change to browse by:
cs

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack