Computer Science > Sound
[Submitted on 2 Apr 2024 (v1), last revised 10 Sep 2024 (this version, v2)]
Title:SPMamba: State-space model is all you need in speech separation
View PDF HTML (experimental)Abstract:Existing CNN-based speech separation models face local receptive field limitations and cannot effectively capture long time dependencies. Although LSTM and Transformer-based speech separation models can avoid this problem, their high complexity makes them face the challenge of computational resources and inference efficiency when dealing with long audio. To address this challenge, we introduce an innovative speech separation method called SPMamba. This model builds upon the robust TF-GridNet architecture, replacing its traditional BLSTM modules with bidirectional Mamba modules. These modules effectively model the spatiotemporal relationships between the time and frequency dimensions, allowing SPMamba to capture long-range dependencies with linear computational complexity. Specifically, the bidirectional processing within the Mamba modules enables the model to utilize both past and future contextual information, thereby enhancing separation performance. Extensive experiments conducted on public datasets, including WSJ0-2Mix, WHAM!, and Libri2Mix, as well as the newly constructed Echo2Mix dataset, demonstrated that SPMamba significantly outperformed existing state-of-the-art models, achieving superior results while also reducing computational complexity. These findings highlighted the effectiveness of SPMamba in tackling the intricate challenges of speech separation in complex environments.
Submission history
From: Kai Li [view email][v1] Tue, 2 Apr 2024 16:04:31 UTC (6,624 KB)
[v2] Tue, 10 Sep 2024 14:02:58 UTC (1,236 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.